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Abstract

We survey a new approach to constructing a deformation of crystalline cohomology for arithmetic
schemes, motivated by archimedean and p-adic Hodge theory.
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CHAPTER 1

Introduction

In this first chapter we illustrate some of the reasons why this work was first conceived.

For a smooth proper scheme X over a number field K, there is a wealth of cohomology theories
attached to X, as well as comparisons among them. For example, if we fix an embedding � : K ! C
then we can define X(C) = (X ⌦K,� C)(C) and consider its singular cohomology H

⇤
(X(C),Q) or

scalar extensions H⇤
(X(C),Qp) for primes p. The former is of essentially topological nature, while

the latter has a purely algebro-geometric description thanks to the Artin comparison theorem:

H
⇤
(X(C),Qp) ' H

⇤

ét
(XK̄ ,Qp).

Note that the target has a natural action by Gal(K̄/K) that is difficult to perceive on the left side
(due to its reliance on �).

There is also the algebraic de Rham cohomology H
⇤

dR
(X/K) that consists of filtered K-vector spaces.

Although its dimension over K agrees with that of H⇤
(X(C),K), there is no natural isomorphism

between these. However, if we extend scalars to C then analytic tools provide a link via the de
Rham comparison theorem:

H
⇤

dR
(X/K)⌦K C ' H

⇤

dR
(XC/C) ' H

⇤
(X(C),C) = H

⇤
(X(C),Q)⌦Q C.

We will revisite this from a broader viewpoint shortly, in terms of vector bundles over a disc.

One of the aims of p-adic Hodge theory is to provide an analogous isomorphism relating H
⇤

dR
(X/K)

and H
⇤

ét
(XK̄ ,Qp) when K is a p-adic field (rather than a number field). In that setting, the role of

scalar extension to C is replaced by scalar extension to a much larger type of ring (called a p-adic
period ring). This also can be reinterpreted in terms of vector bundles over a curve, called the
Fargues-Fontaine curve.

In this introduction we briefly review these perspectives based on vector bundles over curves in
order to motivate our goal of exploring potential analogues in the global setting over a number field.
(We focus our attention in this thesis on the base field Q, so in effective smooth proper schemes
over Z[1/N ]. Generalizations over number fields require inputs from class field theory that would
take us too far afield here.)

1. Hodge structures

Let us begin by reviewing a reintepretation of Hodge theory as introduced by Simpson and Deligne.
Denote by FFR (in analogy with the non-archimedean theory to be discussed below) the so-called

7



8 1. INTRODUCTION

“twistor” projective line given as the quotient of P1

C by the conjugate-linear involution c : P
1

C ! P
1

C
sending z to �1/z. This form of P1

R is the unique nontrivial Brauer-Severi curve over R.

Here are some basic features:

(1) FFR is an algebraic curve of genus zero over R with no R-points. The residue field at every
closed point is non-canonically isomorphic to C (two properties that characterize FFR up
to isomorphism, as a Brauer-Severi variety).

(2) The map 1 : Spec(C) ! P
1

C induces a closed immersion Spec(C) ! FFR which we still
denote 1. The formal completion at 1 of FFK is the formal unit disc Spf C[[u]].

(3) There is an evident equivalence of categories between G-equivariant vector bundles on FFR

and finite dimensional R-vector spaces. It can be promoted to an equivalence between the
categories of G-equivariant semistable vector bundles of slope w/2 on FFR and pure Hodge
structures of weight w.

In this context, one can associate, for X a smooth proper scheme over C, a vector bundle E on
FFR to the singular cohomology H

i
(X(C),R), the following way. Define E to be the maximal

sub-bundle of H i
(X(C),R)⌦R OFFR generated by G-equivariant global sections.

One can check that E satisfies the following:

(1) it has global sections over � := Spf C[[u]] ! FFR given by the i-th cohomology of the
complex:

OX [[u]]! u
�1

⌦
1

X [[u]]! u
�2

⌦
2

X [[u]]! · · ·

and, more precisely, it is the trivial vector bundle

H
i
dR

(X)⌦C O�

on �.

(2) it is isomorphic to the trivial vector bundle H
i
(X(C),R)⌦R OFFR on FFR � {1}.

(3) the transition map on the overlap �
⇤ is given by the comparison isomorphism:

↵dR : H
i
dR

(X)⌦C C((u)) ' H
i
sing(X,R)⌦R C((u))

induced by the Poincaré Lemma in holomorphic de Rham cohomology, tensored by C((u)).

Fiberwise, E has fiber non-canonically isomorphic to H
i
(X(C),C) at every closed point of FFR �

{1} (since every such point has residue field non-canonically isomorphic to C), and isomorphic to
the Hodge cohomology

H
i
Hodge

(X) :=

M

p+q=i

H
p
(X(C),⌦

q
X).

The vector bundle E is G-equivariant and semistable of weight i/2; this is a reformulation of the
fact that the Hodge filtration is split by its complex conjugate.
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2. p-adic Hodge theory

Let X be a smooth and proper scheme over Qp (we stick to Qp rather than general p-adic fields for
ease of notation in this Introduction, which anyway serves just as motivation). It was a conjecture of
Grothendieck that de Rham and p-adic étale cohomology of X should contain the same information,
in that one should be able to recover one from the other and conversely, and in a functorial way.
Fontaine made this vision precise via his discovery of the formalism of period rings, especially the
huge Qp-algebras Bcris and BdR, the latter of which is a complete discretely valued field that contains
the former.

Just as H
⇤

dR
(X/Qp) is a filtered vector space and H

⇤

ét
(XQ̄p

,Qp) has a natural Galois action, the
field BdR supports a Galois action and filtration via its discrete valuation, and Fontaine conjectured
that naturally as BdR-vector spaces:

H
⇤

dR
(X)⌦Qp BdR ' H

⇤

ét
(XQp

,Qp)⌦Qp BdR

respecting the relevant structures. Among other interesting consequences, via properties of BdR

this allows one to recover H
⇤

dR
(X) from H

⇤

ét
(XQp

,Qp):

H
⇤

dR
(X) ' (H

⇤

ét
(XQp

,Qp)⌦Qp BdR)
Gal(Qp/Qp).

There is an analogous comparison theorem involving crystalline cohomology of the special fiber
when X is equipped with a smooth proper model over Zp, in which case the role of BdR is replaced
by Bcris, which in turn has a Frobenius endomorphism ' serving a role analogous to that of the
Frobenius operator on the crystalline cohomology of a smooth proper scheme in characteristic p.

Fontaine’s precise conjectures were proved by Faltings, and in more recent years a variety of others
proofs have been found via new tools in p-adic Hodge theory. A fundamental new insight in recent
years has been the theory of the Fargues-Fontaine curve FFK , one for each p-adic field K, that
recasts p-adic comparison isomorphisms for smooth proper K-schemes in terms of vector bundles
on that curve. This exhibits striking analogies with the Deligne–Simpson picture for Hodge theory
over C as discussed above.

The scheme FFK is a Dedekind scheme (not of finite type over Qp) whose function field is E =

Frac(B
'=1

cris
) and which admits a distinguished point 1 for which the associated completion of E is

BdR. Moreover, it is a deep fact that B
'=1

cris
is a principal ideal domain, and it is a fact that

FFK � {1} ' Spec(B
'=1

cris
).

Thus, loosely speaking, FFK is a “gluing” of B'=1

cris
and the discrete valuation ring B

+

dR
of BdR. In

this way, B+

dR
plays the role of a formal disc, and BdR is a “formal punctured disc” akin to C((u))

in the discussion of Hodge theory over C.

From this more intuitive description we gather the expectation that a regular function f on FFK

must be regular on both FFK � {1} and at 1, which means f is in the subring of E given by:

B
'=1

cris
\B

+

dR
= Qp.

Fargues and Fontaine proved that in a variety of ways, FFK behaves like a projective line (except
it is not of finite type over its field of global functions that is Qp). This curve leads to a profound
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geometric rephrasing of p-adic Hodge Theory. In particular, using analogies with the projective
line, vector bundles on FFK can be classified similarly to vector bundles on P

1 (in terms of rank
and slopes).

If X is a smooth and proper scheme over K, there is a canonical and functorial way to associate to
H

i
ét
(XK ,Qp) a vector bundle E on FFK , uniquely determined by the following properties:

(1) over the open U := FFK � {1} ' Spec(B
'=1

cris
), E is the trivial vector bundle:

E |U ' H
i
ét
(XK ,Qp)⌦Qp OFFK .

(2) over the “formal disc” � := (FFK)
^
1 ' Spec(B

+

dR
), E is the trivial vector bundle:

E |� ' H
i
dR

(X)⌦K O�.

(3) on the overlap �
⇤
:= Spec(BdR) the transition map is given by ↵dR.

The p-adic de Rham comparison theorem for a smooth proper K-scheme X can be reinterpreted as
constructing a map of vector bundles on FFK :

E ! H
i
ét
(XK ,Qp)⌦Qp OFF.

that exhibits E as a “modification at 1” (i.e., isomorphism away from 1) of the trivial vector
bundle.

In fact one can start with the trivial vector bundle and construct E as the maximal sub-bundle
generated by Gal(K/K)-equivariant global sections in a formal neighborhood of 1, which turns
out to be a reformulation of the fact that the de Rham comparison isomorphism is compatible with
filtrations.

The operation H
i
ét
(XK ,Qp) 7! E allows one to use the theory of vector bundles on FFK to assign

conditions on H
i
ét
(XK ,Qp) (and more generally to study p-adic Galois representations of geometric

origin).

3. Global dream

We wonder whether, for smooth proper schemes X over a ring of S-integers OK,S , with K a fixed
number field, there exists an analog CK,S of the Fargues-Fontaine curves over R and p-adic fields
for each p, and we ask ourselves whether it is possible (after enlarging S) to associate, for any choice
of complex embedding K ⇢ C, to the singular cohomology H

i
sing

(X
an
,OK,S) a vector bundle E on

CK,S which is a modification of the trivial vector bundle:

H
i
sing(X

an
,OK,S)⌦OK,S OCK

and whose fiber at some marked closed point 1 2 CK,S is, at least after rationalization, related to
the Hodge cohomology H

i
Hodge

(X) :=
L

p+q=iH
p
(X,⌦

q
X/K).

Most importantly, we wonder whether we can rephrase conditions on the rational Hodge structure
on H

i
sing

(X
an
,K) in terms of conditions on E .
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While this thesis does not concern the construction of such CK,S , we do, however, in the sample
case K = Q, O = Z, propose a candidate for the conjectural completion along1 to the conjectural
E associated to H

i
sing

(X
an
,Z[1/N ]).

For K = Q, what should the partial data determining the conjectural assignment
H

i
(X

an
,Z[1/N ]) 7! E

look like? One expects that:

(1) E is isomorphic to the trivial vector bundle H
i
(X

an
,Z[1/N ]) ⌦Z[1/N ] OCZ,{p|N} over the

open subscheme U := CZ,{p|N} � {1}.

(2) the formal completion of E along the conjectural section 1 of CZ,{p|N} is an arithmetic
version of the i-th cohomology of the complex from the foregoing. What, precisely?

(3) the transition map on the overlap should be given by a comparison isomorphism with
H

i
(X

an
,Z[1/N ])

involving a period ring OCZ,{p|N}(� \ U), for � := Spec(O
^

CZ,{p|N},1
) the “disc” around 1

in CZ,{p|N}.

This thesis makes progress towards providing a candidate answer to (2).





CHAPTER 2

q-divided powers

In this chapter we introduce the notion of q-divided powers. We point out to the reader that at
least two concepts exist in the literature that qualify as “q-analogs" of the more familiar notion of
divided powers. The first to appear is, to the best of the author’s knowledge, the one in work of A.
Quiros, M. Gros and B. Le Stum [GrLS], where the authors investigate the existence of a number
of related notions of q-divided powers.

We denote by [n]q the polynomial in q with integer coefficients defined as the ratio (q
n
� 1)/(q� 1),

usually called n-th Gaussian integer (since [n]q ⌘ n mod q � 1). We further denote by [n]q! the
obvious “Gaussian analog” of the factorial n!, by declaring [n]q! to be the product of each [i]q for
1  i  n.

Their q-divided powers are loosely modeled around the operations “x
n
/[n]q!”. The authors set up

their theory in a non-axiomatic way though, i.e. they do not develop axioms defining their q-divided
power operations, in the spirit of the classical divided powers as in [Berthelot, Ch. I, §1 Def. 1.1].
They often assume their Z[q]-algebras of interest are [n]q-torsion free for every integer n � 1, in which
case assigning the notion of q-divided powers of an element, and variants thereof, is a more amenable
task. They discuss a number of related notions, such as q-divided power polynomial algebras in one
indeterminate and several variants, as well as variations on the notion of q-derivations. The goal of
their work does not appear directly related to de Rham and q-de Rham theories.

The second to appear is, to the best of the author’s knowledge, in the work of B. Bhatt and
P. Scholze on prismatic cohomology [BhSch]. Their work appeared around the time the author
defended this thesis, and this manuscript was therefore revised so as to include references to [BhSch]
and, especially, illustrate the differences between our different approaches to q-de Rham theory.

Before we start, we wish to spend a few words outlining why we are undertaking the seemingly
overkill endeavor of developing a theory through axioms, in the spirit used in [Berthelot, Ch. I].
One may decide to declare for flat Z[q]-algebras A that an ideal I ⇢ A “carries q-divided powers”
exactly when for every x 2 I, we have:

x
n
2 [n]q!I

for every n � 1. In this case, the ideal generated in the Z-flat A/(q� 1)A by the image of I carries
divided powers in the classical sense.

In our theory, q-divided power structures will be defined without flatness assumptions and in the
key cases of “q-divided power envelopes” for smooth algebras we’ll be able to make contact with
classical divided power envelopes (and ultimately use theorems from the crystalline theory as input
to bootstrap to results with q-divided powers in cohomological settings). The notion of “q-divided

13



14 2. q-DIVIDED POWERS

power envelope”, to be introduced here, will enable us to further construct a Čech-Alexander complex
for a large class of Z[q]-algebras, together with a number of its completions, which will produce
cohomology theory to be compared in favorable situations to the q-de Rham theory. We will
repackage the resulting completed Čech-Alexander complexs as derived global sections of a structure
sheaf on an appropriate q-crystalline site, and our q-divided powers will enter the construction in
much the same way as classical divided powers do for Grothendieck’s crystalline site.

In other words and to summarize, q-divided power envelopes and their properties (with particular
emphasis on relating their reduction modulo q � 1 with classical divided power envelopes from
the crystalline theory in nice circumstances) are the main point of this chapter, and one of the
key points of the entire theory. That develop an axiomatic theory of q-divided powers has the
purpose of constructing category of q-divided power algebras with which we can perform universal
constructions.

This theory of q-divided powers shares a number of results that one proves for classical divided
powers and divided power rings and algebras. At the same time, it also possesses a few stark
differences with the classical theory.

After recalling the definition and basic features of Gauss’ q-analogs [n]q, for integers n � 1, and
various q-analogs of familiar notions, such as q-factorials [n]q!, we proceed axiomatically, to model
the existence of elements “x

n
/[n]q!” for every integer n � 1.

1. q-divided power structures

For the benefit of the reader, we recall the classical notion of divided power structures.
Definition 1.1 Let A be a commutative ring, I ⇢ A an ideal. By divided powers on I we mean a
collection of maps �n : I ! I for every integer n � 0, such that:

(i) For all x 2 I, �0(x) = 1, �1(x) = x, �n(x) 2 I if n � 1.

(ii) For x, y 2 I, �n(x+ y) =
P

i+j=n �i(x)�j(y).

(iii) For a 2 A, x 2 I, �n(ax) = a
n
�n(x).

(iv) For x 2 I, �i(x) · �j(x) =
�i+j

i

�
�i+j(x) for all i, j � 0.

(v) For x 2 I, �i(�j(x)) = Cij · �ij(x), where Cij :=
(ij)!

i! · j!i
.

One observes that an easy induction shows

(1.0.1) Cij =

i�1Y

t=1

✓
tj + j � 1

tj

◆
,

and hence Cij is an integer.

Definition 1.1 is [Berthelot, Def. 1.1], and the reader may consult Chapter I in loc.cit. for a
comprehensive treatment of the classical theory.

We start with an elementary and familiar sample situation.



1. q-DIVIDED POWER STRUCTURES 15

Example 1.2 Let R be any flat Z(p)-algebra. The ideal pR carries divided powers in the classical
sense. Indeed, for any x = pa in pR one can set

�n(x) :=
p
n

n!
a
n
.

Since the exponent of p in the prime factorization of n! is bn/pc+
⌅
n/p

2
⇧
+
⌅
n/p

3
⇧
+ . . ., one checks

that indeed for every n � 0, �n(pR) ⇢ pR. That the family of maps {�n : pR ! pR}n�0 satisfies
the axioms in Definition 1.1 is an easy verification.

Before diving into the general theory of q-divided powers, we digress on Gaussian analogs enough
to be able to produce what shall deserve to be called a “q-deformation” of Example 1.2.

We assign the following:
Definition 1.3 For every integer n � 1, we define the element in Z[q]:

[n]q :=
q
n
� 1

q � 1
,

and we refer to it as the q-analog of n. Likewise, we set:

[n]q! :=

nY

i=1

[i]q!

and ✓
n

i

◆

q

:=
[n]q!

[n� i]q! · [i]q!

setting [0]q := 1. We refer to each as q-factorials and q-binomial coefficients.
Remark 1.4 We note that it is not entirely obvious that

�n
i

�
q

is an element of Z[q]. This is
nonetheless easy and shown in Lemma 1.4 below. The key is the identity in Z[q]:

[n]q =
Y

1 6=d|n

�d(q),

where �d(q) is the d-th cyclotomic polynomial. This follows from the identity in Z[q]:

q
m
� 1 =

Y

e|m

�e(q)

and the definition of [n]q, and shows that [d]q | [n]q in Z[q] if and only if d | n in Z.

Note that if p is prime then [p]q = �(q) is irreducible in the UFD Z[q], and Z[[q� 1]]/(�p)! Zp[⇣p]

via q 7! ⇣p � 1 is an isomorphism (using that �p(1) = p). In particular, [p]q generates a height-1
prime in the 2-dimensional regular domain Z[[q � 1]].
Lemma 1.5 We have in Z[q] the following identities:

(i) for all n � 0, [n]q! =
Q

1 6=dn�d(q)
bn/dc

.
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(ii) for all n, i � 0:
✓
n

i

◆

q

=

Y

bn/dc>bi/dc+b(n�i)/dc

�d(q)
bn/dc�bi/dc�b(n�i)/dc

.

Proof. (i): We write:

[n]q! =

nY

i=1

[i]q =

nY

i=1

Y

1 6=d|i

�d(q).

We then observe that the set of positive integers i  n such that d divides i has size bn/dc, which
enables us to regroup the product into [n]q! =

Q
1 6=dn�d(q)

bn/dc, as desired. (ii): follows from (i)
(note that the inequality condition on d forces d 6= 1). ⇤

We now discuss a “q-deformation” of Example 1.2:
Example 1.6 Let p be a prime number. Let A be the Z[q]-algebra given by the completion of the
discrete valuation ring Z[[q � 1]]([p]q) (with residue field Qp(⇣p) since Z[[q � 1]]/([p]q) = Zp[⇣p]).

Under the above assumption, we claim that the ideal I = [p]qA ⇢ A is equipped with the family of
maps {⌘n : I ! I}, indexed by the positive integers, constructed as follows. Given any x = [p]qa 2 I

we set, in K := Frac(A):

⌘n(x) =
[p]

n
q

[n]q!
a
n
.

We now check that indeed it is the case that ⌘n(x), a priori only in K, in fact always lies in I. The
case n = 1 is clear.

The strategy consists in showing that:

(a) the ratio [p]
n�1
q /�p(q)

bn/pc in K is an element of A;

(b) the ratio [n]q!/�p(q)
bn/pc in K is a unit in A.

If (a) and (b) are true, then we can divide in A the element [p]n�1
q /�p(q)

bn/pc by the unit [n]q!/�p(q)
bn/pc,

the result being, in K, the ratio y := [p]
n�1
q /[n]q!. This will show that this ratio is in fact contained

in A, and since ⌘n(x) = [p]qay, we deduce that ⌘n(x) is contained in the ideal [p]qA, as desired.

For (a): for n � 0, we have, by Lemma 1.4:

[n]q! =
Y

1 6=dn

�d(q)
bn/dc

On the other hand, since [p]
n�1
q = �p(q)

n�1, we deduce that the element [p]
n�1
q /�p(q)

bn/pc of K is
an element of A as long as n� 1 � bn/pc, which is of course the case for any n � 1.

For (b): we claim that [n]q!/�p(q)
bn/pc in K is a unit in A. To this end, by Lemma 1.4 again, it is

enough to check that for every 1 6= d  n, with p 6= d, �d(q) is a unit in A. We write d = p
m
e with

p and e coprime (with m 6= 1 if e = 1). First suppose m � 1, so

�d(q) = �pe(q
pm�1

).



1. q-DIVIDED POWER STRUCTURES 17

If m � 2 and e > 1 we have, upon specializing q at a primitive p-th root of unity ⇣p:

�d(⇣p) = �pe(1) = �e(1
p
)/�e(1) = 1.

Thus, �d(q) is a unit in A for all d = p
m
e with m � 2, e > 1, p and e coprime.

Now suppose d = pe, with e > 1. Then:

�e(q) · �d(q) = �e(q
p
)

in Z[q]. In order to check that �d(q) is a unit in A, it is enough to check that �e(q
p
) is a unit in A.

Again after specializing q at ⇣p we get �e(⇣
p
p ) = �e(1) 6= 0.

Now let d = e coprime to p and d > 1. Since ⇣p is not a root of �d(q), we conclude in this case too
that �d(q) is a unit in A.

To summarize, we have shown that for d = p
m
e, m � 0, e > 1 and p and e coprime, �d(q) is a

unit in A. We also know that �pm(q) is a unit for m > 1, by means of the same reasoning, since
�pm(⇣p) = �pm(1) = p 6= 0 in A/[p]q.

Since d cannot be 1 by Lemma 1.5, we are through. Note that we have shown the identity:

[n]q! = u · [p]
bn/pc
q

with u 2 A
⇥.

Before introducing q-divided powers, we make a few remarks.
Remark 1.7 We note from Example 1.6 that we have shown that [p]q divides [n]q! in A a total of
bn/pc times. This is much less than the times p divides n!, which is bn/pc+

⌅
n/p

2
⇧
+
⌅
n/p

3
⇧
+· · · . It is

however still enough to ensure that the ratio [p]
n�1
q /[n]q! in K is an element of A. We further observe

that the arguments in Example 1.6 have never really used completeness of A in the (q�1, [p]q)-adic
topology, which was only assumed for psychological reasons. The example can be restated verbatim
for A = Z[q]p, with p the prime ideal generated by [p]q, and I = p.
Remark 1.8 Keeping A as in Example 1.6, if n is a power of p, say p

r for r � 1, one can be more
precise.

First, we observe that for I = [p]qA and x = [p]qa 2 I, we have:

⌘p(x) =
[p]

p
q

[p]q · [p� 1]q!
a
p
= u · [p]

p�1

q a
p

where u is a unit. We then further observe (using [i]qp [p]q = [pi]q) that we have:

[p
2
]q! = eu ·

pY

i=1

[i]qp · [p]
p
q

for eu 2 A
⇥ (since [d]q 2 A

⇥ with p - d). Now note that the map � : A ! A sending q 7! q
p is a

ring homomorphism, and hence if [i]q is a unit in A, so is �([i]q). This latter is [i]qp . It follows that
[p

2
]q! = v · [p]qp · [p]

p
q , with v a unit in A. Moreover, [p]qp is a unit in A since [p]qp = �p2 has nonzero

value on ⇣p. Thus, ⌘p2([p]qa) is an A
⇥-multiple of [p]p

2
�p�1

q [(p]qa
p
). This gives another proof that

⌘p2(x) 2 I.
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We can likewise show that ⌘pr(x) is in I in a similar way, by induction on r. Indeed, we have:

[p
r
]q! = u ·

pr�1Y

i=1

[i]qp · [p]
pr�1

q

for u 2 A
⇥. Since [i]qp =

Q
1 6=d|i�d(q

p
), by reducing modulo [p]q (which amounts to specializing q

at a primitive p-th root of unity ⇣p) we get:

[i]qp(⇣p) =
Y

1 6=d|i

�d(1) 6= 0.

As a result, we have [p
r
]q! = v · [p]

pr�1

q for v 2 A
⇥, so for r � 2 we have that ⌘pr([p]qp) is a unit

multiple of [p]p
r
�pr�1

�1
q ([p]qq

pr
).

Remark 1.9 For A again as in Example 1.6, we note how, when p = 2, ⌘4(x) and ⌘2(⌘2(x)) are
related in K by the element:

[4]q!

[2]q! · [2]q!
2

but this element is not in A, let alone in Z[q]. Indeed, it is (q
2
+ 1)/(q + 1)

2. The moral is that
even though in A one has access to a wider supply of units than in Z[q], and so nontrivial relations
such as the ones in the foregoing become true, it is still the case that basic elements such as the one
above are still not in A anyway. This makes the task of singling out a “q-analog” of axiom (v) in
Definition 1.1, somewhat delicate.
Remark 1.10 We point out a final aspect of Example 1.6, for which we consider the following
diagram:

([p]q)
⇢
//

✏✏

Z[[q � 1]]
^

([p]q)

q 7!1

✏✏

q 7!⇣p
// Zp[⇣p]

⇣p 7!1

✏✏

(p)
⇢

// Zp p 7!0

// Fp

By the argument given in Example 1.6, and adopting the same notation, we see that under the
reduction modulo q � 1 map A ! Zp, the maps ⌘n : [p]qA ! [p]qA are turned into the maps
�n : pZp ! pZp of Example 1.2.

More precisely, for any x 2 [p]qA, with image x̄ in Zp under the quotient A ! Zp, the image of
⌘n(x) agrees with �n(x̄). To see this, we use that for every integer n � 1, A is [n]q-torsion free and
Zp is n-torsion free. Indeed, Example 1.6 shows that for every such x, xn 2 [n]q!I. This implies
that x̄

n is in the ideal of Zp given by n!Ī, where Ī is the ideal of Zp generated by the image of [p]q
under A! Zp, which is of course pZp. By torsion-freeness, there can be only one element y in Zp

such that n! · y = x̄
n. Both �n(x̄) and the image of ⌘n(x) in A satisfy the relation that y satisfies,

whence these agree. It also means that the image of ⌘n(x) in Zp under reduction modulo q� 1 does
not depend on the choice of x, but only on x̄.

While Example 1.6 is quite elementary to begin with, it does offer a few instructive takeaways.
Namely, for A a Z[q]-algebra and I ⇢ A an ideal:
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(a) Whichever the final definition of q-divided powers of x 2 I shall be, it is a reasonable
expectation that, in the special case where for each integer n � 1 both A is [n]q-torsion
free and A/(q � 1)A is n-torsion free, x admits an “n-th q-divided power” precisely when
x
n
2 [n]q!I.

(b) Specialization of q at 1 should “turn” q-divided powers into divided powers in the sense of
Definition 1.1.

(c) The ideal ([p]q) ofthe discrete valuation ring Z[[q� 1]]
^

([p]q)
should be treated as the correct

analog of the ideal (p) of Zp in the classical theory.

There are of course a number of more serious reasons why we shall assign the definition we give
later in this chapter for the concept of q-divided powers. However, each of the points above already
draws a distinction between our theory and that in [BhSch, §16].

We note that in the above Example 1.6, the elements ⌘n(x) for x 2 I are a replacement for “xn/[n]q!”.
There are other reasons why modeling q-divided powers around the operations “xn/[n]q!” is a fruitful
way forward, as we shall see.

For the moment, the takeaway of the above motivational observations is that in the sequel, we shall
not regard the ideal (q� 1) ⇢ Z[q] as an analog of the ideal (p) ⇢ Z(p) from the classical theory. In
particular, we shall not expect the ideal (q� 1) to carry “q-divided powers”, and in fact it typically
will not, in almost every situation.

Before we start discussing the notion of q-divided powers and q-divided power rings and algebras,
we spend some time pinning down some crucial differences of our approach to q-crystalline cohomol-
ogy,from the construction in [BhSch, §16], with particular emphasis on why a p-locality assumption
(which we have bypassed) seems to be essential in [BhSch].

As mentioned above, the map ⌘n : I ! I in Example 1.6 has the role of replacing the operation
x
n
/[n]q! on I in very much the same way as �n in a general divided power structure replaces x

n
/n!

on (p) ⇢ Z(p).

Set A = Z[[q � 1]]p, with p = [p]qA. The ideal I ⇢ p of A equipped with the data of {⌘n} is for
us the basic instance of a “q-divided power structure”, a concept which we introduce below, and
deserves to be regarded as a “q-deformation” of the ideal (p) ⇢ Z(p) equipped with its divided power
structure �, as we have discussed in Remark 1.10.

In our quest for an axiomatic theory of q-divided powers replacing the operation “x
n
/[n]q!” for every

n � 1, we immediately hit a snag: whatever such a theory will be, it will lack a usable analogue
of the binomial theorem. Indeed, for any Z[q]-algebra A and x, y 2 A, the best analogue of the
binomial theorem that we know of is

(1.0.2)
n�1Y

i=0

(x+ q
i
y) =

nX

i=0

q
(n�i)(n�i�1)/2

✓
n

i

◆

q

x
i
y
n�i

(proved by induction on n), yet this is clearly not symmetric in x and y, and the left side has little
to do with the expression (x+ y)

n
/[n]q!.
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In other words, upon axiomatizing a q-analogue of divided powers, we expect to lose the ability to
check that an ideal carries such a structure by checking it on generators (apart from the case the
ideal is principal), an ability that axiom (ii) in Definition 1.1 gives us in the classical theory. This will
require us to run certain arguments in a more coordinate-free way (e.g., the construction of q-divided
power envelopes is by necessity more abstract that in the classical case, even for smooth algebras).
Apart from this technical difficulty, the theory will work similarly to its classical counterpart that
will be recovered by specializing q to be 1. It will be essential to us to relate q-divided power
envelopes to classical divided power envelopes. As it turns out, an advantage of setting up the
theory axiomatically is that in favorable circumstances the reduction modulo (q� 1) of a q-divided
envelope is closedly related to a classical divided power envelope (with a discrepancy that will be
harmless for our cohomological goals).

In [BhSch, §16] the authors take quite a different approach. Suppose D is a (p, q � 1)-adically
complete Zp[[q � 1]]-algebra. The approach in loc.cit. seems to be dictated by the desire to endow
the ideal (q � 1) ⇢ D with an analogue of a divided power structure, which we recall is somewhat
orthogonal to our approach, since (q� 1) will typically not carry such structure in our theory, while
[p]qD would, under suitable assumptions on D.

In order to set up a theory for which the ideal (q � 1)D carries such structure, the authors equip
themselves with the additional datum of “Frobenius lifts” on D (in the p-torsion free setting this
amounts to a single operator whose reduction modulo p agrees with the p-th power map). The idea
to use a collection of “Frobenius lifts” was first introduced by Pridham in [Prid], via the observation
that the �-structure on Z[[q � 1]] assigned by requiring �(q) = 0, or equivalently by declaring the
map q 7! q

p to be the pth Adams operation for every prime p, enables one to define, for every
positive integer n, a map �n on (q � 1) as

�n(x) :=
�n(x)

[n]q
�

�n(x)� x
n

n

where �n is the n-th Adams operation. For �-, �- and Adams operations, and the relevant theory,
we refer the reader to [Joyal].

Indeed, by definition of the q-analogue of an integer, �n(q � 1) = q
n
� 1 is in the ideal generated

by [n]q, and so for any x 2 (q � 1) the ratio �n(x)/[n]q lies in Z[[q � 1]], so �n makes sense as an
operation on the ideal (q � 1) valued in Z[[q � 1]]. Note that �n is a q-deformation of xn/n. For
n = p the discrepancy between x

n
/n and x

n
/n! is harmless since it is a unit (p� 1)! 2 Z(p).

The work in [BhSch] sets up an analogue of the crystalline site by building on this observation and
works with a concept of “q-divided power thickening” using ideals carrying analogues of the above
maps �n. With this approach one doesn’t quite get a q-deformation of classical divided powers,
though, and it is here that the authors appear to be bound to require all the Z[q]-algebras entering
their construction to be at least “p-local”, usually p-adically complete.

Indeed, upon specializing the map �n at q = 1, we obtain a collection of maps that gives a replace-
ment for the operation “x

n
/n” rather than “x

n
/n!”. One notes that in order for the crystalline site

and cohomology to work, i.e. in order to have a Poincaré Lemma for affine spaces that enables one
to compute cohomology using appropriate complexes of differential forms, which is usually a way
to establish good properties of such cohomology, one actually needs divided power structures as in
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Definition 1.1 in the definition of divided power rings, algebras and thickenings. This weakening will
not yield an exact augmented de Rham complex in the respective theory: roughly, adjoining “f

n
/n”

for every n and every f in some ideal in a polynomial Z[q]-algebra will render some cycles in the
resulting de Rham complex which weren’t integrable before, integrable, while, however, introducing
new non-integrable cycles, such that f

n
/n itself.

To bypass this problem (the lack of the ability to recover usual divided power structures on the nose
upon specializing q at 1), of course one may simply further assume all Z[[q�1]]-algebras involved are
p-adically complete and separated, and then the datum of �p above is indeed sufficient to construct
arbitrary divided powers after specializing q at 1. This is what is done in [BhSch].

The work [BhSch] equips every pair (D, I), for D a (p, q � 1)-adically (separated and) complete
Zp[[q � 1]]-algebra and I ⇢ D a (p, q � 1)-adically complete ideal of D containing (q � 1), with the
additional datum of a �-structure on D in the sense of Joyal (see [Joyal]). Maps between such pairs
are required to be compatible with the �-structures. Additional conditions are introduced to define
what it means for I to carry a q-deformation of divided powers (see [BhSch, §16, Def. 16.2]), which
essentially amounts to requiring, first, that for every x 2 I we have �p(x) 2 [p]qD for every x 2 I.
Here �p is the Frobenius lift on D determined by the �-structure; morally, this is akin requiring
that “x

p
/[p]q” is defined in D for every element x of I. This enables one to define the map:

�p(x) :=
�p(x)

[p]q
� �(x),

as a map �p : I ! D. The authors then declare that I carries a q-divided power structure if, in
addition, �n(I) is contained in I.

We highlight again that use of �-structures in [BhSch] appears to be motivated by the aim of
building on the intuition that the ideal (q � 1) should carry “q-divided powers”. In turn, if one is
to recover usual divided powers after specializing q at 1 and to have any hope that the resulting
q-crystalline cohomology compares correctly with de Rham cohomology, then one needs D to at
least satisfy some p-locality condition, in order to reconstruct all divided powers on D/(q � 1) out
of “xp/p” alone. p-adic completeness of D appears to be needed throughout [BhSch] for a number
of other reasons too, which we refrain from discussing here.

The task of constructing a “q-crystalline site” that makes sense for Z[q]-algebras, or at least (q�1)-
adically separated and complete Z[[q�1]]-algebras, with no p-adic completeness, appears to therefore
be tied to the task of getting rid of �-structures altogether. It seems reasonable to expect that it
is due to the necessity of �-structures in the theory from [BhSch], in turn given by the desire of
endowing the basic ideal (q� 1)D ⇢ D with “q-divided powers”, that the authors in loc.cit. confine
themselves into a p-local, and often p-adically separated and complete, situation.

It appears to the author that there is not much of a choice but to proceed as in the current literature,
mostly around quantum groups and Lie algebras, by defining q-divided powers by axiomatizing them
as a replacement for the operation x

n
/[n]q!. In so doing, we have to accept that the ideal (q � 1)

generally does not carry a q-divided power structure, even in the p-adically complete case. Before
introducing our notion of q-divided powers, we first discuss a preliminary concept: that of a “coarse”
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q-divided power structure. This concept is modeled on the case of Z[q]-algebras A that are [n]q-
torsion free for each integer n � 1 (not necessarily Z-flat). Later q-divided powers will be defined
to be coarse q-divided powers satisfying some additional conditions.

We assign the following (omitting analogue of axioms (ii) and (v) from Definition 1.1).
Definition 1.11 Let A be a Z[q]-algebra and I an ideal of A. By q-divided powers on I we mean
a collection of maps ⌘n : I ! I for every integer n � 0, such that:

(i) For all x 2 I, ⌘0(x) = 1, ⌘1(x) = x, ⌘n(x) 2 I if n � 1.

(iii) For a 2 A, x 2 I, ⌘n(ax) = a
n
⌘n(x).

(iv) For x 2 I, ⌘i(x) · ⌘j(x) =
�i+j

i

�
q
⌘i+j(x) for all i, j � 0.

Remark 1.12 For n � 1 we have ⌘n (0) = 0 for any ideal I of A and any q-divided power structure
⌘ on I. (This follows from axiom (iii) in Definition 1.11, applied to a = 0.)
Notation 1.13 For a Z[q]-algebra A, an ideal I ⇢ A and coarse q-divided powers {⌘n : I ! I}n�0,
we denote the collection of the maps ⌘n by ⌘, to abbreviate. We call it a q-divided power structure
on I.

The following Lemma provides a large class of examples of coarse q-divided power structures. It also
shows that ⌘n(x) is a replacement for the operation “x

n
/[n]q!” on I. It further shows that in the

special situation in which A is [n]q-torsion free for every n � 1, coarse q-divided power structures
are a more intrinsic notion.
Lemma 1.14 Let A be a Z[q]-algebra, I an ideal of A, and ⌘ a q-divided power structure on I.

(1) We have [n]q!⌘n(x) = x
n for n � 1, x 2 I.

(2) For any x, y 2 I,
Qn�1

i=0
(x+ q

i
y) = [n]q!

Pn
j=0

q
(n�j)(n�j�1)/2

⌘j(x)⌘n�j(y).

Assume A is [n]q-torsion free for every positive integer n as a Z[q]-module. Then:

(3) a q-divided power structure on I, if it exists, is unique.

(4) If, for n � 0, ⌘n : I ! I is a family of maps, then it is a q-divided power structure if and
only if [n]q!⌘n(x) = x

n for all x 2 I, n � 0.

Proof. For (1): Suppose I carries q-divided powers. Then by iterating axiom (iv) applied to
i = n and j = 1 in Definition 1.11 we obtain x

n
= [n]q!⌘n(x) for every integer n � 1. This implies

x
n
2 [n]q!I for every integer n � 1 and every x 2 I.

For (2): we “divide and multiply” by [j]q! and [n � j]q! (which makes sense since their product
divides [n]q! in Z[q]) to obtain

nX

j=0

q
(n�j)(n�j�1)/2

✓
n

j

◆

q

([j]q!⌘j(x))([n� j]q!⌘n�j(y)) =

nX

j=0

q
(n�j)(n�j�1)/2

✓
n

j

◆

q

x
j
y
n�j

.

But it is an easy induction on n that this final expression is equal to
Qn�1

i=0
(x+ q

i
y) (see (1.0.2))

For (3): it follows from (1) and [n]q-torsion freeness of A for every integer n � 1.
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For (4): Assume that for every integer n � 1, we have x
n
2 [n]q!I for every x 2 I. Then we set

⌘0(x) = 1 and ⌘1(x) = 1, as well as ⌘n(x) to be the unique element an of I such that [n]q!an = x
n.

That such element exists is due to the assumption on x. Uniqueness of such an element is due to
the [n]q-torsion freeness assumption on A for every n � 1. The ⌘n’s are, therefore, well defined, and
we only need to check that they indeed satisfy the axioms in Definition 1.11.

Axiom (i) is clear by design of the ⌘n’s. So is axiom (iii), since [n]q!(⌘n(ax)� a
n
⌘n(x)) = 0 and A

is [n]q!-torsion free. For axiom (iv), we have:
✓
i+ j

i

◆

q

· [i]q! · [j]q! · ⌘i(x)⌘j(x) =

✓
i+ j

i

◆

q

x
i
· x

j

=

✓
i+ j

i

◆

q

x
i+j

=

✓
i+ j

i

◆

q

[i+ j]q!⌘i+j(x)

and since
�i+j

i

�
q
·[i]q!·[j]q! = [i+j]q!, we can cancel out [i+j]q! on both sides since A is [i+j]q!-torsion

free, to conclude. ⇤

As we have just discussed a criterion to decide when an ideal I in a Z[q]-algebra A carries q-divided
powers in the case A is [n]q-torsion free, we spend a few more words to further note that [BhSch]
focuses on the situation where their q-divided power pairs (D, I) have [p]q-torsion free D. This may
be necessary for the authors to avoid an axiomatization of the features of their map �p on I, and is
sufficient to establish their main results.

In [BhSch], the authors prove that the reduction modulo q � 1 of their q-divided power envelop
indeed is the classical (p-adically separated and complete) divided power envelop in the case of
algebras that are p-adically (ind-)étale over a free algebra and the ideal is generated by a p-adically
regular sequence. This is enough for their main applications. In our approach, we will likewise
establish a close connection with a classical divided power envelope in favorable cases that suffice
for our intended applications.
Example 1.15 The maps ⌘n in Example 1.6 are a q-divided power structure on the ideal I = ([p]q).
Indeed, the arguments in the example show that for any x 2 I and any integer n � 1, xn 2 [n]q!I.
Since the Z[q]-algebra A in that example is [n]q-torsion free for every n � 1, we may apply Lemma
1.14(4), to conclude. Of course, the maps ⌘n are not merely q-divided powers: their “specialization
at q = 1”, as described in Remark 1.10, is a divided power structure on the specialization of the ideal
I in A/(q � 1)A. We saw this was a consequence of the fact that, in addition to being [n]q-torsion
free for every integer n � 1, A/(q� 1)A is also n-torsion free for every such integer. This additional
Z-flatness might possibly fail for more general A that are not [n]q-torsion free for every n � 1.
Lemma 1.16 Let A be a Z[q]-algebra, I ⇢ A an ideal. Assume that A is f -torsion free for any
f 2 {q � 1} [ {[n]q, n � 1}, and that A/(q � 1)A is bZ-flat. Then for a q-divided power structure
on I, there is a unique compatible divided power structure on the image I of I in A/(q � 1)A.

Proof. By Lemma 1.14, I carries a q-divided power structure if and only if for every x 2 I,
we have x

n
2 [n]q!I. Then every element x̄ of I satisfies: x̄

n
2 n!I. This implies that I carries
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divided powers �n in the classical sense since A/(q�1)A is Z-flat by hypothesis. For any x 2 I, the
image of ⌘n(x) in I serves as �n(x̄) for x̄ the image of x in I since [n]q!⌘n(x) = x

n and A/(q � 1)A

is Z-flat. ⇤

1.1. Morphisms involving q-divided power structures. We now give some more basic
definitions.
Definition 1.17 A q-pair is a pair (A, I) where A is a Z[q]-algebra, I ⇢ A is an ideal. Morphisms
of pairs (A, I)! (B, J) are morphisms f : A! B of Z[q]-algebras such that f(I) ⇢ J . We denote
by qPairs the resulting category of q-pairs.

For a q-pair (A, I), an (A, I)-algebra (B, J) is a map of pairs (A, I)! (B, J). Morphisms of (A, I)-
algebras are morphisms of pairs over (A, I). We denote by (A, I)-Alg the category of (A, I)-algebras.
Definition 1.18 A q-divided power ring is a triple (A, I, ⌘) where (A, I) is a q-pair and ⌘ is a
q-divided power structure on I. Morphisms of q-divided power rings (A, I, ⌘) ! (A

0
, I

0
, ⌘

0
) are

morphisms of pairs f : (A, I)! (B, J) such that, for every x 2 I and n � 0, ⌘0n(f(x)) = f(⌘n(x)).

A q-divided power algebra over a q-divided power ring (A, I, ⌘) is a divided power ring (A
0
, I

0
, ⌘

0
)

equipped with a morphism of q-divided power rings (A, I, ⌘)! (A
0
, I

0
, ⌘

0
). Morphisms of q-divided

power (A, I, ⌘)-algebras are morphisms of q-divided power rings over (A, I, ⌘).

We remark here that since a morphism of q-divided power rings (A, I, ⌘)! (B, J,) is induced by
a morphism of Z[q]-algebras f : A! B, the maps n � f : I ! J satisfy:

(i) For all x 2 I, 0(f(x)) = 1, 1(f(x)) = f(x), n(f(x)) 2 J if n � 1,

(iii) For a 2 A, x 2 I, n(f(a)f(x)) = f(a)
n
n(f(x)),

(iv) For x 2 I, i(f(x)) · j(f(x)) =
�i+j

i

�
q
i+j(f(x)) for all i, j � 0,

We also have:

(i)⌘ For all x 2 I, f(⌘0(x)) = 1, f(⌘1(x)) = f(x), f(⌘n(x)) 2 J if n � 1.

(iii)⌘ For a 2 A, x 2 I, f(⌘n(ax)) = f(a)
n
f(⌘n(x)).

(iv)⌘ For x 2 I, f(⌘i(x)) · f(⌘j(x)) =
�i+j

i

�
q
f(⌘i+j(x)) for all i, j � 0.

If, in addition, n �f = f �⌘n on I for every n � 0, then by Z[q]-linearity of f and by the above two
lists of properties, following from the axioms of q-divided powers, we also have that the expressions
in (⇤) and (⇤)⌘ agree for ⇤ =i,iii,iv.

The notion of morphism of q-divided power rings, and hence the notion of q-divided power algebra
over a q-divided ring and morphisms of such, therefore all make sense.

We point out once more that if q = 1 in A, a q-divided power structure on I is a weakening of the
notion of divided power structure on I since analogues of the “additivity” and “composition” axioms
have been removed.
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2. q-divided power rings and algebras

Lemma 2.1 Let (A, I, ⌘) be a q-divided power ring and qPD/(A,I,⌘) be the category of of q-divided
power algebras over (A, I, ⌘). Then qPD/(A,I,⌘) has all limits and they agree with limits in the
category of Z[q]-algebras.

Of course, the very last statement contains an abuse of terminology; it means that if {(As, Is, �
(s)

)}s2⌃

is a diagram in qPD/(A,I,⌘), with ⌃ a small index category, and if (B, J,) is its limit, then
B = lims2⌃As in the category of A-algebras. However, limits in the category of A-algebras agree
with limits in the category of Z[q]-algebras.

Proof. The empty limit is the zero q-divided power ring (0, (0),?). The product of a collection
of q-divided power rings (At, It, �t), t 2 T is given by (

Q
At,

Q
It,) where n((xt)) = (t,n(xt)).

The equalizer of ↵,� : (B, J,) ◆ (B
0
, J

0
,

0
) is just C = {x 2 B | ↵(x) = �(x)} with ideal C\J and

induced q-divided powers. Of course one still needs to check that for every n � 0, n : C \ J ! J

really factors through C \ J , and all the axioms of course follow from the axioms for . This is
true because the set underlying C is the set-theoretic equalizer of ↵ and �. It follows that all limits
exist, since products and equalizers do. ⇤

We will often write (A, I) rather than (A, I, ⌘) without risk of confusion. We will adopt the same
notation for q-divided power algebras over (A, I).

The following lemma illustrates a very general category-theoretic phenomenon in the case of q-
divided power algebras.
Lemma 2.2 Let qPD/(A,I) be the category of q-divided power algebras. Let F : qPD/(A,I) ! Sets
be a (covariant) functor. Assume that

(1) there exists a cardinal ⌫ such that for every f 2 F (B, J) there exists a morphism (B
0
, J

0
)!

(B, J) of qPD/(A,I) such that f is the image of f 0
2 F (B

0
, J

0
) and |B

0
|  ⌫, and

(2) F commutes with limits.

Then F is representable; i.e., there exists an object (C,K) of qPD/(A,I) such that

F (B, J) = HomqPD/(A,I)
((C,K), (B, J))

functorially in (B, J).

Proof. This is an application of a general representablity result [SP, Tage 0AHM]. We sketch
the argument here, for completeness. One calls C the essentially small category whose objects are
pairs ((B, I), f) with (B, I) a q-divided power algebra over (A, I) satisfying |B|  ⌫, and morphisms
are maps h : (B, I)! (B

0
, I

0
) in qPD/(A,I) such that F (h)(f) = f

0. We set:

(C
0
,K

0
) := lim

((Bj ,Jj),fj)2C
(Bj , Jj)
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which exists by assumption. Since F commutes with limits, we find a universal element f 2

F (C
0
,K

0
) mapping to fj 2 F (Bj , Jj) under F applied to the projection (C

0
,K

0
)! (Bj , Jj) for all

j. This yields a transformation of functors:

⇠ : HomqPD/(A,I)
((C

0
,K

0
), ·)! F (·)

One checks that by assumption (1), ⇠ is surjective when evaluated at arbitrary objects in qPD/(A,I).

In order to find a representing object for F , we replace (C
0
,K

0
) with (C,K), the equalizer of all the

self maps g : (C
0
,K

0
) ! (C

0
,K

0
) such that F (g) = f . Since F commutes with limits, and hence

with equalizers, by assumption (1) again, we see that surjectivity of ⇠ implies surjectivity of

⇠
0
: HomqPD/(A,I)

((C,K), ·)! F (·).

It is elementary to now check ⇠
0 is, in addition, injective when evaluated at arbitrary objects in

qPD/(A,I). ⇤

For q-divided powers we cannot generally expect to make constructions by chasing “generators and
relations” as in the theory of usual divided powers (e.g., there is no “addivity” axioms). The next
Lemma is therefore established more abstractly, as an application of Lemma 2.2.
Proposition 2.3 The category of q-divided power algebras over (A, I) has all colimits.

As with usual divided powers, the forgetful functor (B, J) 7! B does not commute with colimits.

Proof. The empty colimit is Z[q] as a Z[q]-algebra, with q-divided power ideal (0). We now
discuss general colimits. Let ⌃ be an essentially small index category and let s 7! (Bs, Js, ⌘s) be a
diagram. Consider the functor

F (B, J, ⌘) = lim
s2⌃

Hom((Bs, Js, ⌘s), (B, J, ⌘))

Note that any f = (fs)s2⌃ 2 F (B, J, ⌘) has the property that the images fs(Bs) generate an A-
algebra B

0 of B of bounded cardinality ⌫ (as B varies) and that the images fs(Js) generate a an ideal
J
0 of B0 contained in J . Using the functions ⌘n for (B, J) nearly equips (B

0
, J

0
) with a q-divided

power structure; the problem is that the outputs of these functions may not lie in J
0. So we replace

B
0 with the A-subalgebra B

00 of B generated by ⌘n(J
0
) ⇢ J , and replace J

0 with the ideal J 00
⇢ B

00

generated by ⌘n(J
0
) ⇢ J .

Iterating this process countably many times brings us to a q-divided power ring with cardinarily
bounded independently of (B, J), and we get a factorization of f as a f

0 in F (B
0
) followed by the

inclusion B
0
! B. Clearly F commutes with limits, so we may apply Lemma 2.2 to conclude that

F is representable. ⇤

The key application of Proposition 2.3 is the existence of universal q-divided power envelopes, which
we discuss in the next section.
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3. q-divided power envelopes

The construction of the following lemma will be called the q-divided power envelope. It will play
a crucial role later insofar it will ultimately make our q-crystalline theory more tangible, in much
the same way as divided power envelopes enable one to use Čech theory to compute cohomology
and relate it to the cohomology of an appropriate de Rham complex via a suitable divided power
Poincaré Lemma.
Lemma 3.1 Let (A, I, ⌘) be a q-divided power ring and consider the category qPD/(A,I,⌘) of q-divided
power algebras over (A, I, ⌘). Let J ⇢ B be an ideal with IB ⇢ J .

There exists a q-divided power algebra (B
0
, J

0
, �) over (A, I, ⌘) and a map of pairs (B, J)! (B

0
, J

0
)

over (A, I) such that for any q-divided power algebra (C,K,) over (A, I, ⌘), any map of pairs
(B, J) ! (C,K) over (A, I) uniquely extends to a map of q-divided power algebras (B

0
, J

0
, �) !

(C,K,).

In other words, the map of sets

HomqPD/(A,I,�)
((B

0
, J

0
, �), (C,K,))! Hom(A,I)-Alg((B, J), (C,K))

is bijective.

Proof. Our aim is to prove the representability of the functor

(C,K,) 7! Hom(A,I)-Alg((B, J), (C,K)),

which we will do via Lemma 2.2. Condition (2) is clear due to the second assertion in Lemma 2.1.
For condition (1), we proceed as follows.

Let (C,K,) be a q-divided power algebra over (A, I, ⌘).

For any map of pairs f : (B, J) ! (C,K) over (A, I), consider the image A-subalgebra R0 =

f(B) ⇢ C. The ideal J0 = f(J)R0 ⇢ R0 may not admit q-divided powers in R0 (in the sense of
being stable under  on K), but its elements do admit such in C since J

0
⇢ K (in the same sense as

we encountered in the proof of Proposition 2.3). Hence, it makes sense to form the R0-subalgebra
R1 ⇢ C generated by all q-divided powers of elements of J0. The ideal J1 ⇢ R1 generated by those
q-divided powers may not itself admit q-divided powers in R1 (in the sense of stability under ,
once again), but does so inside C since J1 ⇢ K. So we can iterate again.

After countably many steps, we obtain a pair (R1, J1) ⇢ (C,K) such that J1 does admit q-
divided powers, which we denote ⇢. In this way, (R1, J1, ⇢) ! (C,K,) is a map of q-divided
power algebras. Hence, to verify condition (2) in Lemma 2.2 we just need to bound the cardinality
of all such R1’s in terms of (B, J) and (A, I) (i.e., uniformly in (C,K)). But this is clear from the
construction since R0 is a quotient of B, and we iterated the finite steps in the construction of R1

at most countably many times. ⇤
Definition 3.2 Let (A, I, ⌘) be a q-divided power algebra. Let A! B be a Z[q]-algebra map. Let
J ⇢ B be an ideal with IB ⇢ J . The q-divided power algebra (B

0
, J

0
, �) over (A, I, ⌘) constructed

in Lemma 3.1 is called the q-divided power envelope of J in B relative to (A, I) and is denoted
(DB,q(J), J̄).
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We let (A, I, ⌘) be a divided power ring. Let (B, J) be a pair over (A, I). For emphasis, we record
the universal property of DB,q(J) explicitly now. For any morphism of pairs f : (B, J) ! (C,K)

over (A, I), with (C,K,) a q-divided power algebra over (A, I, ⌘), there exists a unique morphism
of q-divided power algebras:

(DB,q(J), J̄ , �)! (C,K,)

extending (B, J) ! (C,K). By “extending” we mean that the composition of the morphisms of
pairs

(B, J)! (DB,q(J), J̄)! (C,K)

is equal to f . In other words, (B, J)! (DB,q(J), J̄) is the universal map from (B, J) to a q-divided
power algebra over (A, I, ⌘) (it corresponds to the identity on (B, J)).

As a special case (corresponding to K = 0), there is a unique B-algebra map
DB,q(J)! B/J

carrying J̄ to 0, and it identifies DB,q(J)/J̄ with B/J (as is easily seen via the universal property).
We shall often times omit to mention J̄ and the q-divided power structure � on J̄ .
Remark 3.3 The arguments around the countably infinite process in the proof of Lemma 3.1
imply that DB,q(J) is obtained by the following process. We begin with its subring B0 given by
the image of B, and the ideal J0 = JB0 ⇢ J̄ . Then we define B1 ⇢ DJ,q(B) to be generated over
B0 by the q-divided powers in DJ,q(B), and J1 to be the ideal in B1 generated by the q-divided
powers of the elements of J0B1 ⇢ J̄ . We keep going, countably many times, and in the (co)limit we
reach a q-divided power sub-object (B1, J1) ⇢ (DJ,q(B), J̄). By universal property considerations,
B1 = DJ,q(B) and J1 = J̄ .

Since a Z-module M is flat if and only if it is n-torsion free for all n � 1, we introduce the following
convenient terminology.
Definition 3.4 A Z[q]-module is called q-flat if it is [n]q-torsion-free for all n � 1.

For the multiplicative set S ⇢ Z[q] � {0} generated by the elements [n]q for n � 1 and any Z[q]-
module M , the image of M ! S

�1
M is a q-flat quotient of M and dominates all others. We denote

it Mqfl. Here is the general behavior of q-divided power envelopes with respect to quotients.
Proposition 3.5 Let (A, I, ⌘) be a q-divided power ring. Let f : B

0
! B be a surjection of A-

algebras, with kernel K. Let J ⇢ B be an ideal containing IB, and J
0
= f

�1
(J) ⇢ B

0.

Let K 0 be the smallest ideal in DB0,q(J
0
) satisfying KDB0,q0(J

0
) ⇢ K

0
⇢ J̄

0 and admitting q-divided
powers. Then the natural map DB0,q(J

0
) ! DB,q(J) is a surjection carrying J̄

0 onto J̄ and killing
K

0, with the resulting quotient map DB0,q(J
0
)/K

0
! DB,q(J) inducing an isomorphism between

maximal q-flat quotients.

Proof. Write E = DB,q(J) and E
0
= DB0,q(J

0
). The universal property of E

0 gives us a
homomorphism E

0
! E of q-divided power algebras. As B0

! B and J
0
! J are surjective, we see

that the natural map ' : E
0
! E is surjective because of Remark 3.3. Since K

0 is generated from
the subideal K 0

0
:= KDB0,q(J

0
) = KE

0
⇢ J̄

0 by the evident countably infinite process as in Remark
3.3 (i.e., form the ideal K 0

1
inside J̄

0 generated by q-divided powers of all elements of K 0
0
, and then

the ideal K 0
2

generated by all q-divided powers of elements of K 0
1
, and so on), clearly K

0 is in the
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kernel of '. Hence, we obtain a natural homomorphism E
0
/K

0
! E that inherits surjectivity from

that of B0
! B (due to Remark 3.3).

There is a naturally induced surjection (E
0
/K

0
)qfl ! Eqfl which we want to show is injective. Note

also that E
0
/K

0 is a B-algebra since B = B
0
/K and KE

0
⇢ K

0. Since in the maximal q-flat
quotient (E

0
/K

0
)qfl the elements x

0 of the image J̄
0

qfl of J̄ 0 satisfy x
0n
2 [n]q!J̄

0

qfl, so the ideal J̄ 0

qfl
admits q-divided powers, by the universal property of E we also obtain a map of divided power
algebras E ! (E

0
/K

0
)qfl over (A, I). The target is q-flat, so this uniquely factors through Eqfl. Via

universality considerations, (E0
/K

0
)qfl ! Eqfl ! (E

0
/K

0
)qfl is the identity map. ⇤

We now discusse an important relation between q-divided power envelopes and classical divided
power envelopes. To do this, we require a Z-flatness property analogous to [BhSch, Def. 16.2(3)].
Lemma 3.6 If P is a polynomial ring in finitely many variables over a Z[q]-smooth ring A, and
J an ideal in P such that P/J is Z[q]-smooth. Then for D = DP,q(J), the quotient Dqfl/(q � 1) is
Z-flat.

The proof of this involves messy computations and will be given elsewhere. A consequence for our
needs is that for the ideal J̄ ⇢ D, its image J

0 in Dqfl/(q � 1) admits divided powers in the usual
sense since every x 2 J̄ satisfies x

n
2 [n]q!J̄ and hence its image x

0
2 J

0 satisfies x
0n
2 n!J

0 (so J
0

admits divided powers because Dqfl/(q � 1) is Z-flat).

We are finally ready to establish the following:
Proposition 3.7 Let (A, I, ⌘) be a q-divided power ring with Z[q]-smooth A and (B, J) a pair over
(A, I) with B and B/J smooth over A. Let (DB,q(J), JD, �D) be the q-divided power envelope of
(B, J).

Letting (B, J) = (B/(q� 1)B, J/(q� 1)J) we have a unique isomorphism of divided power algebras
over (A, I, �):

DB,q(J)qfl/(q � 1) ' DB(J)

carrying the canonical ideal of DB,q(J) onto the canonical ideal of DB(J) via the universal property
of divided power envelopes.

Proof. Let D = DB,q(J)qfl. The canonical map DB,q(J)! DB̄(J̄) has target that is Z-smooth,
hence Z-flat and so q-flat since it is a Z[q]-algebra killed by q�1. It is a surjection due to the concrete
description of DB̄(J̄) (thanks to our smoothness hypotheses), and by Z-flatness of its target must
factor through the q-flat quotient D. In this way we obtain a surjection D/(q � 1) ! DB̄(J̄), and
our goal is to show that is an isomorphism.

By Lemma 3.6, the quotient B̄-algebra D/(q� 1) is Z-flat and so admits a divided power structure
on the image J

0 of the canonical ideal of D (since x
0n
2 n!J

0 for all x0 2 J
0, due to the fact that

x
n
2 [n]q!JD for all x 2 JD). Hence, by universality there is a canonical map DB̄(J̄)! D/(q � 1).

This is surjective due to the concrete description of D as a rising tower (see Remark 3.3), and the
composite map

DB̄(J̄)! D/(q � 1)! DB̄(J̄)
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is the identity by universality. Hence, by surjectivity of both maps in this composition it follows
that both maps are isomorphisms. ⇤

The preceding result will enable us to ultimately compare q-crystalline and de Rham cohomology,
re-constructing the latter as the specialization at q = 1 of the former.

4. Examples and concluding remarks

In this subsection we record a few technical results that will enable us to make contact with the
existing de Rham and crystalline theories once we develop q-crystalline cohomology. This section is
mostly about examples and tools to build new q-divided power algebras from old ones.

We fix a q-divided power ring (A, I, ⌘).

First, we discuss some cases in which we may extend q-divided powers across Z[q]-algebra maps.
Namely, suppose B is an A-algebra and consider the pair (B, IB). We say that ⌘ extends to (B, IB)

if there exists ⌘
0
: IB ! IB a q-divided power structure, such that for every x 2 I ⇢ IB we have

⌘
0
n(x) = ⌘n(x) for every n � 0.

We have:
Lemma 4.1 Let (A, I, ⌘) be a q-divided power ring, and B an A-algebra. Then ⌘ extends to B

when I is principal and B is [n]q-torsion free for every n � 1.

Proof. Let a be a generator of I, so IB consists of elements ab for b 2 B. By the q-flatness of
B, extending ⌘ is equivalent to the condition x

n
2 [n]q!IB for all x 2 IB. Since x = ab, we have

x
n
= a

n
b
n
= [n]q!⌘n(a)b

n
2 [n]q!IB as desired. ⇤

We now have the following:
Lemma 4.2 Let (A, I, ⌘) be a q-divided power ring, and (B, J) an algebra over (A, I). Assume
that:

(i) B is [n]q-torsion free for every n � 1.

(i) q � 1 is regular in B.

Then q � 1 is regular on DB,q(J)qfl. If moreover q � 1 is regular on A, then

DB,q(J)qfl ⌦
L
A A/(q � 1) = DB,q(J)⌦A A/(q � 1).

Proof. For the first statement: since the formation of q-divided power envelopes commutes
with localization at multiplicative sets (due to universality), we have

DB,q(J)qfl ⇢ B


1

[n]q
, n � 1

�

by assumption (i). Since q � 1 is regular in B

h
1

[n]q
, n � 1

i
by assumption (ii), it is regular in

DB,q(J)qfl too.



4. EXAMPLES AND CONCLUDING REMARKS 31

Finally, if q�1 is regular in A then the homology of DB,q(J)qfl⌦
L
AA/(q�1) is concentrated in degrees

�1 and 0. In degree �1 it is TorA1 (A/(q�1), DB,q(J)qfl), and in degree 0 it is DB,q(J)⌦AA/(q�1).
We only need to check that

Tor
A
1 (A/(q � 1), DB,q(J)qfl) = 0,

which holds since we have already seen that q � 1 is regular in DB,q(J)qfl. ⇤

In our intended applications, it will always be the case that q � 1 is regular, and so Lemma 4.2
applies. This Lemma will be useful when computing q-crystalline cohomology using Čech-Alexander
complexes.

Already in the case q � 1 is regular in A, with (A, I, ⌘) a q-divided power ring, we have that the
functor (·) ⌦

L
A A/(q � 1) commutes with totalization of complexes. This is true because regularity

of q � 1 in A implies that (·)⌦
L
A A/(q � 1) has finite homological dimension, and hence commutes

with totalizing a simplicial A-module. Lemma 4.1 is useful to compare the [p]q-completion of our
q-crystalline theory, further base changed to Fontaine’s Ainf , with the complex A⌦ of [BMS]; this
will be discussed elsewhere.





CHAPTER 3

Completions and Čech-Alexander complexes

In this chapter we collect a few results on q-divided power envelopes in order to use them to prove
and use Poincaré Lemmas and relate Čech-Alexander complexes to q-de Rham complexes.

1. q-pd adic filtration on q-divided power algebras

Recall that given a q-pair (A, I), that is, a Z[q]-algebra A and an ideal I ⇢ A, there exists a universal
way to “enlarge" A enough to ensure I is contained in an ideal that carries q-divided powers. That
is the q-divided power envelop (DA,q(J), J̄).
Definition 1.1 Let (A, I, ⌘) be a q-divided power ring. We denote by I

hni the ideal of A defined
by the following three properties:

(i) I
hni contains the ideal of A generated by all the elements of the form:

⌘i1(x1) · · · ⌘ik(xk)

where x1, . . . , xk 2 I and i1 + · · ·+ ik � n.

(ii) I
hni is contained in I and stable under the q-divided powers on I.

(iii) I
hni is minimal with respect to the two properties above.

We set Ih0i = A and we have I
h1i

= I. The sequence of ideals Ihni ⇢ A forms a decreasing filtration
on A upon varying n. We call this the q-pd adic filtration on A.

Moreover, we say:

(a) (A, I, ⌘) is q-pd nilpotent if there exists an integer n � 0 such that I
hni

= 0.

(b) (A, I, ⌘) is q-pd quasi-nilpotent if there exist an integer n � 0, and g 2 Z[q], with g(1) 6= 0,
such that:

g(q) · I
hni

We call the linear topology on A generated by the filtration F•A with FtA := [t]q!I
hti for all t � 1,

the q-pd adic topology.

Before moving on, we are going to make an observation that will prove useful.
Remark 1.2 Let (B, J) be an (A, I)-algebra. Let x 2 J and denote by x also its image in
J̄ ⇢ DB,q(J). For all integers m,n � 0, m 6= 0, and for N = m(n+1), xN is contained in [m]q · J̄

hni.
33



34 3. COMPLETIONS AND ČECH-ALEXANDER COMPLEXES

Indeed, ⌘N (x) is an element of J̄ hni, and [N ]q! ·⌘N (x) is an element of [m]q · J̄
hni. However, we know

[N ]q! · ⌘N (x) = x
N .

In other words, the image of xN in DB,q(J)/[m]qJ̄
hni is zero. This remark, as simple as it is, should

give an idea as to why we modeled our theory of q-divided powers around the operations “xn/[n]q!”:
we wish to retain the ability to recover powers of x by multiplying its q-divided powers by large
enough q-factorials. The importance of this simple fact will become clear below.

We discuss a number of examples.
Example 1.3 Let (A, I, ⌘) be a q-divided power ring. Assume that for every integer n � 1,
[n]q 2 A

⇥. Then I
hni

= I
n for every n � 0.

Example 1.4 Let (A, I, ⌘) be a q-divided power ring such that q = 1 in A. Then, Ihni = I
[n], and

g(q) · I
hni

= mI
[n] with g(q) = g(1) = m, and I

[n] denoting the n-th divided power ideal, as in
[Berthelot, §3.1]. In particular, the q-pd adic filtration on A is the classical pd-adic filtration of
loc.cit., and our notion of q-pd nilpotence, resp. q-pd quasi-nilpotence, agree with pd-nilpotence
and quasi pd-nilpotence (note the order of the terms) of [Berthelot, §3.1 Def. 3.1.1].
Example 1.5 Let (A, I, ⌘) be a Z[q]-flat q-divided power ring. Assume q� 1 is regular in A. Then
upon denoting I

[n] the image of Ihni/(q � 1)I
hni
! A/(q � 1)A, and � the divided power structure

on I0, the image of I/(q � 1)I ! A/(q � 1)A, we have that I
[n] is generated by the elements:

�i1(x1) · · · �ik(xk)

for x1, . . . , xk 2 I0 and i1 + · · · + ik � n. Generated, because of the additivity axiom for divided
powers, whence the ideal of A contained in I0 and generated by these elements already carries
divided powers. In particular, I [n]

0
= I

[n].

We now prove the following result, after which we shall have most of the tools to establish our main
results.
Proposition 1.6 Let A be a Z[q]-algebra, B an A-algebra, J ⇢ B an ideal and C = B/J . Assume:

(1) J is generated by a regular sequence x1, . . . , xd.

(2) the homomorphisms B/J
n
! C have A-linear sections for every n � 1.

Then upon denoting by K the minimal q-divided power ideal containing the ideal generated by
t1, . . . , td in DC[t1,...,td],q((t1, . . . , td)), for every integer m,n � 0, m 6= 0, we have:

(DC[t1,...,td],q((t1, . . . , td))/[m]qK
hni

)qfl ' (DB,q(J)/[m]qJ̄
hni

)qfl.

Proof. We recall that an ideal J ⇢ B generated by a regular sequence (x1, . . . , xd) satisfies:

(a) J/J
2 is free of rank d as a B/J-module.

(b) the natural map of graded B-algebras:

SymB/J(J/J
2
)! grJ(B)

is an isomorphism.
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In particular, J t
/J

t+1 is free as a B/J-module for every integer t � 1.

Let N be m(n + 1). By Remark 1.2, the image of x
N in DB,q(J)/[m]qK

hni is zero. Since J is
generated by d elements, the image of JNd in DB,q(J)/[m]qK

hni is zero too. By Proposition 3.5,
we have a canonical isomorphism:

(DB/JNd,q(J/J
Nd

)/[m]q(J/J
Nd

)
hni
qfl

'
�! (DB,q(J)/[m]qJ

hni
)qfl.

By assumption (2), we may choose a section of B/J
Nd
! C and give B/J

Nd a C-algebra structure,
so as to define a C-algebra map:

C[t1, . . . , td]/I
Nd
! B/J

Nd

sending ti to xi for all 1  i  d. This is an isomorphism by assumption (1). We therefore obtain
an isomorphism:

DC[t1,...,td]/INd,q(I/I
Nd

)
'
�! DB/JNd,q(J/J

Nd
)

and another application of Proposition 3.5 gives the contention. ⇤

Remark 1.7 We note that, if both B and C are Z[q]-flat in Proposition 1.6, then so is B/J
n for

every n � 0. Indeed, one proceeds by induction on n using the short exact sequences of B/J
n-

modules:
0! J

n
/J

n+1
! B/J

n+1
! B/J

n
! 0

using that J
n
/J

n+1 is free of finite type as a B/J-module, hence Z[q]-flat. By Lemma 4.2,
(DB/Jn,q(J/J

n
))qfl is (q � 1)-torsion free.

Now assume B and C is Z[q]-smooth and B/J is Z[q]-smooth. In this case, by Lemma 3.6,
the quotient (DC[t1,...,td],q((t1, . . . , td)))qfl/(q � 1) is the divided power polynomial algebra (C/(q �

1)C)ht̄1, . . . , t̄di, and the ideal [m]qK
hni specializes to the ideal of (C/(q� 1)C)ht̄1, . . . , t̄di given by

m(K/(q � 1)K)
[n]. Moreover,

(DB,q(J)/[m]qJ̄
hni

)qfl/(q � 1) ' DB/(q�1)B(J/(q � 1)J)/mJ/(q � 1)J)
[n]
.

By regularity of q � 1, the isomorphism in Proposition 1.6 yields an isomorphism:

(C/(q � 1)C)ht̄1, . . . , t̄di/m(K/(q � 1)K)
[n] '
�! DB/(q�1)B(J/(q � 1)J)/m ¯J/(q � 1)J)

[n]
.

This isomorphism is [Berthelot, Prop. 3.5.1,(i)].

2. Čech-Alexander complexes

In this section we study two Čech-Alexander complexes, that later we will interpret as the coho-
mology of a structure sheaf on an appropriate q-crystalline site.
Lemma 2.1 Let (A, I, ⌘) be a q-divided power ring. Assume A is Z[q]-flat. Then for every n � 0,
⌘n is continuous for the (q � 1)-adic topology on I.
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Proof. Recall that by Lemma 1.14, carrying q-divided powers is equivalent, for I, to the
property: for every x 2 I, x

n
2 [n]q!I, for every integer n � 1. This crucially uses [n]q-torsion

freeness for every n � 1 and n-torsion freeness of A/(q � 1)A for every n � 1, which in our
case follows by flatness over Z[q]. However, Z[q]-flatness of A implies Z[q]/(q � 1)

t-flatness of
At := A/(q � 1)

t
A for every t � 0. It follows that each At is also [n]q-torsion free for every n � 1

and every t � 0. Indeed, q acts as (⇣d)1 6=d|n on Z[q]/[n]q ⇢
Q

1d|n Z[⇣d], which is therefore (q � 1)-
torsion free, whence Tor

Z[q]
1

(Z[q]/[n]q,Z[q]/(q � 1)
t
) = 0 for every t � 0. It follows multiplication

by [n]q is injective on Z[q]/(q � 1)
t, and hence so is on At by flatness.

This implies that, upon calling It := I/(q� 1)
t
I ⇢ At, the maps ⌘n : I ! I descend to ⌘n,t : It ! It

to make the following diagram of maps of sets commute:

I //

⌘n
✏✏

It

⌘n,t

✏✏

I // It

One may check that the ⌘n,t’s are a q-divided power structure, for instance by Lemma 1.14. Let
x+(q� 1)

t
y 2 I. Then, modulo (q� 1)

t, ⌘n(x+(q� 1)
t
y) must agree with ⌘n,t(x) by the existence

of the maps ⌘n,t and commutativity of the above diagram: the former is ensured by [n]q-torsion
freeness for every n � 1, and the latter by design of the ⌘n,t. It follows that ⌘n(x+(q�1)

t
y)�⌘n(x) 2

(q � 1)
t
A \ I = (q � 1)

t
I, for any y 2 I, whence ⌘n is continuous in the (q � 1)-adic topology on

I. ⇤

We need one more lemma along similar lines.
Lemma 2.2 Let (A, I, ⌘) be a q-divided power ring. Assume A is:

(a) [n]q-torsion free for every n � 1.

(b) (q � 1)-torsion free.

Let P be an A-flat A-algebra and I an ideal of P . If (q� 1) eP is closed in the I-adic topology on eP ,
then, upon calling D := DP,q(I)qfl, (q � 1)D is closed in the q-pd adic topology on D.

Proof. We observe that the assumptions on A ensure that D ⇢ eP , where eA := A[1/[n]q, n � 1]

and eP := P⌦A
eA. We write eP := eA[S]. Since (q�1) eP is closed in the I eP -adic topology, we conclude

by observing that for every integer n � 0, Ihni ✓ I eP \D, the intersection taking place in eP . ⇤
Lemma 2.3 Let (A, I) be a q-pair. Assume that:

(a) both A and A/I are Z[q]-flat.

(b) I
t
/I

t+1 is a flat A/I-module for every t � 1.

Then any element of {q � 1} [ {[n]q, n � 1} is regular in DA,q(I)qfl/Ī
hti for every n � 0.

Proof. Upon writing eA := A[1/[n]q, n � 1] and
gA/I := (A/I

t
)[1/[n]q, n � 1],
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we have DA,q(I)qfl ⇢
eA, Īhti ⇢ I eA, and DA/It,q(I/I

t
)qfl ' DA,q(I)qfl/I

hti
⇢ ]A/It, where we have

used Lemma 3.5 and assumptions (a) and (b), this latter to argue that A/It is Z[q]-flat for all t � 0.
Since q � 1 is regular in each ]A/It, we conclude. ⇤

Remark 2.4 We record here a consequence of the above preparations. Suppose P is Z[q]-flat and
J ⇢ P is an ideal. Denote by eP the localization P [1/[n]q, n � 1] and W the J eP -adic completion of
eP . Assume that:

(a) P/J is Z[q]-flat.

(b) J
t
/J

t+1 is a flat P/J-module for every t � 1.

(c) (q � 1)W is closed in the JW -adic topology.

We denote by bDP,q(J) the completion of DP,q(J) with respect to the q-pd adic topology. We have

(2.0.1) bDP,q(J) = lim
 �
t�1

DP,q(J)qfl/[t]q!J̄
hti
.

The element q � 1 is regular in bDP,q(J) too. From Z[q]-flatness of P/J t for every t � 1, we deduce
that bDP,q(J) is a subalgebra of the I eP -adic completion of eP . Then by the proof of Lemma 2.2,
(q � 1) bDP,q(J) is a closed ideal.

We deduce:
bDP,q(J)/(q � 1) ' lim

 �
t�1

DP/(q�1)P (J/(q � 1)P )/t!(J/(q � 1)J)
hti
.

We denote the right side of the above isomorphism by bDP/(q�1)P (J/(q � 1)J).

We introduce our first Čech-Alexander complex.
Construction 2.5 Let (A, I, ⌘) be a q-divided power ring, and R a smooth A-algebra. Choose
an A-algebra P that is smooth over A, and an A-algebra surjection P ! R. Let P

• be the Čech
nerve of A! P . The kernel J(n) of each augmentation P

⌦A(n+1)
! P ! R is, locally on Spec(P ),

generated by a regular sequence relative to A. We obtain a cosimplicial diagram

(DP •,q(J(•))qfl, J̄(•))

in the category of q-divided power algebras over (A, I, ⌘).

Since the co-degeneracies are maps of q-divided power algebras, the differentials in the associated
complex

Cq-cris(R/A,P
•
)

of A-modules are continuous with respect to the q-pd adic topologies of each DP •,q(J(•))qfl. We
denote by

bCq-cris(R/A,P
•
)

the resulting term-wise completion with respect to the q-pd adic topology. We call the former, the
Čech-Alexander complex of R over A, and the latter, the completed Čech-Alexander complex of R
over A. We further denote Cq(R/A,P

•
) the (q � 1)-adic completion of bCq-cris(R/A,P

•
).



38 3. COMPLETIONS AND ČECH-ALEXANDER COMPLEXES

Remark 2.6 We assume that (A, I, ⌘) a q-divided power ring, such that (q � 1)A is closed in the
q-pd adic topology on A, and A is Z[q]-flat. We let P be a flat A-algebra. We further assume that
we are in the situation where each (P

•
, J(•)) satisfies the assumptions in Remark 2.4, so then

bCq-cris(R/A,P
•
)⌦

L
A^ A

^
/(q � 1)A

^
= bCq-cris(R/A,P

•
)⌦A^ A

^
/(q � 1)A

^

and the right side admits an isomorphism of complexes of A-modules:
bCq-cris(R/A,P

•
)⌦A^ A

^
/(q � 1)A

^
' Cq(R/A,P

•
)⌦A A/(q � 1).

By (2.0.1), bCq-cris(R/A,P
•
) ⌦A^ A

^
/(q � 1)A

^ is the complex of A^
/(q � 1)A

^-modules given by
the completion of the cosimplicial divided power ring

(DP •/(q�1)P •(J(•)/(q � 1)J(•)), J̄(•)/(q � 1)J̄(•))

with respect to the pd-adic topology on each term.

The case of main interest to us will be A = A0[q] for a smooth Z[1/N ]-algebra A0, with the ideal
I = (0) and the trivial q-divided power structure. If R0 is a smooth A0-algebra, R will usually be
R0[q], and P will be of the form P0[q] with P0 a smooth A0-algebra equipped with étale coordinates:

g0 : A0[x1, . . . , xd]! P0

and an A0-algebra surjection P0 ! R0. In particular, A,P and R are Noetherian, and P is (or can
be arranged to be) an integral domain. In particular, for any ideal J of P , the J-adic completion
of P is P -flat and the (J/(q � 1)J)-adic completion of P0 is (J/(q � 1)J)P0-adically separated (so
(q � 1)P is closed for the J-adic topology).

We will often replace A,P and R by their (q � 1)-adic completions.

Ultimately, our goal is to show that for certain A-algebras R, the complex

Cq(R/A,P
•
)

is quasi-isomorphic to a q-de Rham complex (in the sense of Definition 2.8 below) as a complex of
A

^-modules, A^ being the completion of A with respect to an appropriate linear topology coarser
than the (q � 1)-adic.

We now recall a construction from [BhSch, §16] that is a slight generalization of the original
construction of the q-de Rham complex in [Aom].
Construction 2.7 A framed A-algebra is a pair (P, S), where P is an smooth A-algebra and S ⇢ P

is a finite set, and P comes with a morphism:

g : A[S] := A[{ts}s2S ]! P

that is étale.

For each s 2 S, there is a unique A-algebra automorphism �s of A[S] defined by scaling ts 7! qts

and leaving ts0 fixed for s
0
6= s. We now assume A is (q � 1)-adically complete and separated.

As the automorphism �s is congruent to the identity modulo the topologically nilpotent element
q � 1, it extends uniquely to a A-algebra automorphism �s of the (q � 1)-adic completion P

^ of P
that is also congruent to the identity modulo q � 1.
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We now assume A is Z[q]-flat, whence so is P , and hence q�1 is not a zero divisor in P . It therefore
is regular in in P

^ too. Moreover, the étaleness of g yields that ts is not a zero-divisor in P/(q�1)
t
P

for all t � 1, so ts is not a zero-divisor in P
^. In particular, qts � ts = (q � 1)ts is a nonzerodivisor

in P
^, so we obtain a q-derivation rq,s : P

^
! P

^ given by the formula

rq,s(f) :=
�s(f)� f

qts � ts
.

Note that rq,s lifts @
@ts

(·) on A[S]/(q � 1)A[S] and hence on P/(q � 1)P : this is clear for A[S] by
explicit computation and follows for P by étaleness. Likewise, the rq,s’s commute with each other
since this reduces to the case of A[S].

We can assemble these q-derivations into a A-linear map

rq : P
^
! b⌦1

P^/A :=
dM

s2S
P

^
dts

given by the rule rq(f) :=
P
rq,s(f)dts. Taking the completed Koszul complex on the commuting

endomorphisms rq,s (which are q-derivatives, so their non-linearity does not obstruct carrying out
the Koszul construction).
Definition 2.8 We define the q-de Rham complex

q⌦
⇤,⇤
P/A :=

⇣
P

^
rq
��! b⌦1

P^/A

rq
��! b⌦2

P^/A ! ...

⌘
,

regarded as a chain complex of A-modules.

The q-de Rham complex has the following functoriality property: given two framed A-algebras
(P, S) and (P

0
, S

0
) as well as a map P ! P

0 of A-algebras carrying S into S
0, we obtain an induced

morphism q⌦
⇤,⇤
P/A ! q⌦

⇤,⇤
P 0/A of chain complexes.

We now wish to extend Definition 2.8 to the case of q-divided power algebras. To this end, we
let (A, I, ⌘) be a q-divided power ring, and we assume A is Z[q]-flat, so that Lemma 2.3 applies
and ⌘ extends to the (q � 1)-adic completion of A. That such extension is again a q-divided power
structure can be shown directly (we omit this verification).
Construction 2.9 [The q-de Rham complex of a framed q-divided power algebra] A framed q-
divided power algebra is a triple (P, S, J), where (P, S) is a framed A-algebra as in Construction 2.7
and J ⇢ P is an ideal. Let DP,q(A) be the q-divided power envelope. We now require the following:
Lemma 2.10 For each s 2 S, assume the automorphism �s of P^ preserves J

^. Then �s extends
uniquely to an automorphism of DP^,q(J

^
)qfl that is congruent to the identity modulo qts � ts. In

particular, it extends to the (q � 1)-adic completion of DP^,q(J
^
)qfl as an automorphism that is

congruent to the identity modulo qts � ts.

Proof. This is a direct consequence of the universal property of q-divided power envelopes.
Moreover, by Z[q]-flatness of A, and hence of P , we have that q � 1 is regular in DP^,q(J

^
) and

hence we still have:

DP^,q(J
^
)qfl ⌦A A/(q � 1)A ' DP/(q�1)P (J/(q � 1)J)

in which of course the extension of �s reduces to the identity. ⇤
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We can thus define q-derivatives rq,s of DP^,q(J
^
)qfl by the same formula as in Construction 2.7.

These derivatives lift @
@ts

on DP^,q(J
^
)/(q� 1): this follows by identifying the latter as the divided

power envelope of (P/(q � 1)P, J/(q � 1)J) with P/(q � 1)P étale over the Z-flat (A/(q � 1)A)[S].
Taking the Koszul complex of the commuting endomorphismsrq,s as in Construction 2.7, we obtain:
Definition 2.11 We define a q-dR complex q⌦

⇤,⇤
DP^,q(J

^)/A to be

DP^,q(J
^
)
^

qfl
rq
��! DP^,q(J

^
)
^

qfl
b⌦P^ b⌦1

P^/A

rq
��! DP^,q(J

^
)
^

qfl
b⌦P^ b⌦2

P^/A ! . . . ,

regarded as a chain complex of A-modules.

The construction (P, S, J) 7! q⌦
⇤,⇤
DP^,q(J

^)/A has the following functoriality property: given two
framed q-divided power algebras (P, S, J) and (P

0
, S

0
, J

0
) and a map P ! P

0 of A-algebras carrying
S into S

0 and J into J
0, we obtain an induced morphism q⌦

⇤,⇤
DP^,q(J

^)/A ! q⌦
⇤,⇤
D

P
0,^,q

(J 0,^)/D
.

If the (q�1)-adic completion of J is stable in the (q�1)-adic completion P
^ of P under �s for every

s 2 S, then we define qb⌦⇤,⇤
Dq(JD)/A to be the completion of q⌦⇤,⇤

DP^,q(J
^)/A with respect to the q-pd

adic topology on each term. The stability assumption on J
^ under the �s, together with the design

of the differentials, implies the differentials are continuous with respect to the q-pd adic topology,
and hence they extend to the completion.
Remark 2.12 We note that by Lemma 2.6, when A is smooth over Z[q], P is A-smooth equipped
with étale coordinates, and J is an ideal satisfying the above stability assumption then we have:

qb⌦⇤,⇤
Dq(JD)/A ⌦A A/(q � 1)A ' b⌦⇤

bDP/(q�1)P (J/(q�1)J)/(A/(q�1)A)
,

the completion of the divided power de Rham complex ⌦
⇤

bDP/(q�1)P (J/(q�1)J)/(A/(q�1)A)
with respect

to the pd-adic topology.

3. q-crystalline site

We now construct the q-crystalline site for an affine scheme. The basic situation in which we discuss
this material involves q-divided power thickenings: these are q-divided power algebras (A, I, ⌘) for
which [n]q!I

hni
= 0 for large enough n � 1, and A and I are (q�1)-adically separated and complete.

Definition 3.1 We let (A, I, ⌘) be a q-divided power ring. We say (A, I, ⌘) is (q � 1)-adically
complete and separated if A and I are complete complete and separated in the (q� 1)-adic topology
on A and I respectively.

(1) For a cardinal , we say a q-divided power algebra (B, J, �) over (A, I, ⌘) is -small if
|B|  .

(2) We denote by qCRIS(A) the category whose objects are -small and (q� 1)-adically com-
plete and separated q-divided power algebras (B, J, �) over (A, I, ⌘), such that [n]q!J hni

B =

0 for some n � 1, and whose morphisms are morphisms of q-divided power algebras.
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We equip qCRIS(A) with the Grothendieck topology generated by formal affine Zariski
coverings:

{Spf(Bi)! Spf(B)}i2⌃

for ⌃ a finite index set.

(3) For a (q � 1)-adically complete and separated A-algebra R, we denote by qCris(R/A) the
full subcategory consisting of (B, J, �) in qCRIS(A) such that Spf(B/J) is a formal affine
open of Spf(R) as (q � 1)-adic formal schemes over A. We endow qCris(R/A) with the
Grothendieck topology induced from that of qCRIS(A).

We call the sites qCRIS(A) (resp. qCris(R/A)) the big (resp. small) q-crystalline site of A (resp.R
over A). We also denote the small q-crystalline site of R over A by (R/A)q-cris.

The small q-crystalline site (R/A)q-cris carries a ringed structure Oq-cris defined as the sheaf of topo-
logical A-algebras on (R/A)q-cris determined by the assignment: (B, J, �) 7! B. The q-crystalline
cohomology of R relative to A, denoted q⌦R/A, is defined as

q⌦R/A := R�((R/A)q-cris,Oq-cris).

We have the following:
Proposition 3.2 Let (A, I, ⌘) be a q-divided power ring with I = 0 such that A is (q � 1)-adically
complete and separated as well as formally smooth over Z[[q � 1]] for the (q � 1)-adic topology.

Let P be a topologically finitely presented formally smooth A-algebra equipped with formally étale
coordinates:

g : A[t1, . . . , td]
^,(q�1)

! P.

Then we have:
q⌦P/A ' Cq(P/A, P

•
).

Proof. Note that representable functors are sheaves on (P/A)q-cris. We shall freely identify
objects of the underlying category of the site (P/A)q-cris with their representable sheaf on (P/A)q-cris.
We shall omit mentioning the q-divided power structures, leaving them understood from the context.

The map
lim
�!
n�0

(Spec DP⌦AP,q(J(1))qfl/[n]q!J̄(1)
hni

, J̄(1)/[n]q!J̄(1)
hni

)! ⇤

is an effective epimorphism of sheaves of sets. To see this, one needs to check that any object of the
topos of (P/A)q-cris that covers the final object also receives an epimorphism from

(Spec DP⌦AP,q(J(1))qfl/[n]q!J̄(1)
hni

, [n]q!J̄(1)/J̄(1)
hni

)

for some n large enough. This is ultimately consequence of the universal property of q-divided power
envelopes, a verification which we omit here.

Since filtered colimits and the Yoneda embedding commute with finite products, we have that the
(n+ 1)-fold self product of the sheaf

lim
�!
t�0

(Spec DP⌦AP,q(J(1))qfl/[t]q!J̄(1)
hti
, J̄(1)/[t]q!J̄(1)

hti
)
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is isomorphic to
lim
�!
t�0

(Spec DP (n),q(J(n))qfl/[t]q!J̄(n)
hti
, [t]q!J̄(n)/J̄(n)

hti
).

General topos theory implies that q⌦P/A is quasi-isomorphic to the total complex associated to:

R�(lim
�!
t�0

(Spec DP (0),q(J(0))qfl/[t]q!J̄(0)
hti
, J̄(0)/[t]q!J̄(0)

hti
),Oq-cris)!

! R�(lim
�!
t�0

(Spec DP (1)(J(1))qfl/[t]q!J̄(1)
hti
, J̄(1)qfl/[t]q!J̄(1)

hti
,Oq-cris)! · · ·

The diagram of global sections of the sheaf Oq-cris evaluated on each member of the colimits in the
foregoing satisfy the Mittag-Leffler condition because the resulting transition maps are surjective:
this is due to the fact that the morphisms

(Spec DP (•),q(J(•))qfl/[t]q!J̄(•)
hti
, J̄(0)/[t]q!J̄(•)

hti
)!

! (Spec DP (•),q(J(•))qfl/[t+ 1]q!J̄(•)
ht+1i

, J̄(•)/[t+ 1]q!J̄(•)
ht+1i

)

are monomorphisms of sheaves of sets. Indeed, in this case the global sections of the structure sheaf
evaluated on each colimit are isomorphic to the limit of the global sections of the structure sheaf
evaluated on each Spec DP (•),q(J(•))qfl/[t]q!J̄(•)

hti, and this limit has vanishing higher cohomology
due to the Mittag-Leffler property.

Moreover, the higher cohomology of Oq-cris on each Spec DP (•),q(J(•))qfl/[t]q!J̄(•)
hti vanishes, as

follows from vanishing of quasi-coherent cohomology on affine schemes, for which an analogous
argument to that in [Berthelot] applies.

We may therefore identify the above total complex computing q⌦P/A with the total complex of the
bicomplex defined by Cq(P/A, P

•
). ⇤

Before proving Theorem 4.1, we need an aside concerning crystalline cohomology over arbitrary
bases. We record here results that extend the crystalline formalism to the case of arbitrary base
schemes: this is [Berthelot, Appendice], where it is sketched how to compare algebraic de Rham co-
homology to crystalline cohomology when the base scheme is allowed to be arbitrary (not necessarily
torsion).

Ultimately, the key point is [Berthelot, Prop. 3.5.1, (i)], which is our Proposition 1.6 with q = 1.
Indeed, the result enables one to argue that the following map of complexes is a quasi-isomorphism:

D !

⇣
D(n)! ⌦

1

D(n)/D ! ⌦
2

D(n)/D ! · · ·

⌘

where D := lim
 �t�1

DP (J)/t!J
[t] and D(n) := lim

 �t�1
DP (n)(J(n))/t!J(n)

[t], with P
•
! R being the

Čech nerve of a surjection P ! R of smooth A-algebras, with P a polynomial ring over A.

The whole point behind [Berthelot, Prop. 3.5.1, (i)] is that every D(n) is a certain formal power
series algebra over D for every n � 1 (this description is the content of [Berthelot, Prop. 3.5.1, (i)]
applied with B there taken to be our P and C there taken to be our R). That the Poincaré Lemma
holds true for all the D(n) over D is not obvious and requires an argument. One observes that the
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elements of D(n) are formal power series in the free variables generating DP (n)(J(n))/t!J(n)
[t] over

DP (J)/t!J
[t] such that for an arbitrary integer N � 1, all the coefficients of the high order terms

eventually all become divisible by N . The same argument for the Poincaré Lemma for formal power
series algebras containing Q now carries over upon observing that the type of power series described
above is stable under “integration”.

With the above in mind, it is a simple task to show that cohomology of the structure sheaf on
the crystalline site defined as in [Berthelot, Appendice], using quasi pd-nilpotent thickenings as
opposed to ordinary thickenings, is again computed by a Čech-Alexander complex. Moreover, via
the Poincaré Lemma (proved upon bearing in mind the changes above to the usual argument), one
can still prove that cohomology of the de Rham complex computes crystalline cohomology of the
crystalline structure sheaf.

4. Main result

Here finally is main theoretical result, from which we will then draw some interesting conclusions
(going beyond the affine case).
Theorem 4.1 For A a smooth Z[q]-algebra and A

^ its (q�1)-adic completion, P a smooth A-algebra
equipped with étale coordinates g : A[t1, . . . , td]! P , there exists a canonical quasi-isomorphism of
complexes of A^-modules:

Cq(P/A, P
•
) ' qb⌦⇤,⇤

P^/A^

The reason why this result is of interest is that it provides a site-theoretic interpretation for the com-
plex Cq(P/A, P

•
) as the derived global sections of a structure sheaf on an appropriate q-crystalline

site.

Proof. As in the proof of Proposition 3.2, we denote by

P (n) := (P ⌦A · · ·⌦A P )
^

the (n+ 1)-fold tensor product of P over A, and define J(n) to be with kernel of its augmentation
to P

^. Note that all these ideals are stable under the automorphisms �s coming from the étale
coordinates on every P (n).

We therefore write T
•,⇤ the cosimplicial complex of A-modules:

T
•,⇤

:= qb⌦⇤,⇤
DJ• (P •)/A

The cosimplicial A-module T
•,i is quasi-isomorphic to the zero complex for all i > 0, by derived

Nakayama, since it is derived (q � 1)-adically complete and T
•,i
/(q � 1) is indeed homotopic to

zero as a complex of A/(q � 1)A-modules. This latter assertion follows from the fact that each
P (n)/(q � 1) is a smooth A/(q � 1)A-algebra with étale coordinates, and the argument in [BdJ,
Example 2.16] (or [BhCdR, Lemma 2.5]) adapts to this case. This implies that the total complex
associated to T

•,⇤ is quasi-isomorphic to C
•
q (P/A).
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On the other hand the divided power Poincaré Lemma applies to qb⌦⇤,⇤
DJ• (P •)/A/(q � 1) and hence

again by derived Nakayama the cosimplicial transition maps T
i,⇤
! T

j,⇤ are quasi-isomorphisms.
The total complex associated to T

•,⇤ is therefore quasi-isomorphic to its own 0-th column, which is
precisely the complex qb⌦P^/A, as desired. ⇤

Definition 4.2 We let (A, I, ⌘) be a q-divided power ring that is (q � 1)-adically complete and
separated with I = 0 and A topologically finitely presented and formally smooth over Z[1/N ][[q�1]]-
smooth. For a formally smooth topologically finitely presented A-scheme X, qCris(X/A) denotes the
full subcategory of qCris(A) consisting of those objects (B, J, �) in qCRIS(A) such that Spf(B/J)

is a formal affine open of X as (q � 1)-adic formal schemes over A.

We endow qCris(X/A) with the Grothendieck topology induced from that of qCRIS(A). We call
the site the q-crystalline site of X over A.

We note that indeed qCris(X/A) is a site, the only nontrivial axiom to be checked being stability
of coverings under pullbacks, which is true because q-divided power structures Zariski localize.

Define the functor
uX/A : Cris(X/A)! Zar(X)

to send an object (B, J, �) to Spf(B/J) ! X over A. This is continuous and can be checked to
have exact inverse image, thus giving a morphism between the respective topoi.

We write:
q⌦X/A := RuX/A.⇤Oq-cris

where Oq-cris denotes the structure sheaf of qCris(X/A) obtained by assigning to any object (B, J, �)

the value B (an assignment that is already a sheaf). This is an intrinsic notion of q-de Rham complex.

It is a mostly formal task to check that the affine result in Theorem 4.1 implies that for arbitrary
X as in Definition 4.2, we have

(4.0.1) q⌦X/A ⌦
L
A A/(q � 1) ' ⌦

⇤

X0/A0

where X0 is the fiber at q = 1 of X (and likewise for A0).
Proposition 4.3 Let X0 be a proper and smooth scheme over Z[1/N ]. Then for X := X0 ⇥Z[1/N ]

Z[1/N ][[q � 1]], we have that Hi
(XZar, q⌦X/Z[1/N ][[q�1]]) is a finitely generated Z[1/N ][[q � 1]]-module

for every i.

Proof. Let A := Z[1/N ][[q � 1]]. The complex q⌦X/A is a derived (q � 1)-adically complete
complex of A-modules. It follows that H

i
(XZar, q⌦X/A) is derived (q � 1)-adically complete. From

Theorem 4.1 and its global consequence (4.0.1), we have the quasi-isomorphism

q⌦X/A ⌦
L
A (A/(q � 1)A) ' ⌦

⇤

X0/A0
.

This yields short exact sequences:

0! H
i
(XZar, q⌦X/A)/(q � 1)A! H

i
dR

(X0)! H
i+1

(XZar, q⌦X/A)[q � 1]! 0



4. MAIN RESULT 45

for all i. The middle term is finite generated due to properness of X0, so its submodule Hi
(XZar, q⌦X/A)/(q�

1)A is finitely generated. Thus, by derived Nakayama, Hi
(XZar, q⌦X/A) is (q� 1)-adically complete

in the classical sense and hence is finitely generated as an A-module. ⇤

The preceding proof indicates the sense in which the finitely generated Z[1/N ][[q � 1]]-module
H

i
(XZar, q⌦X/Z[1/N ][[q�1]]) is a deformation of H i

dR
(X0) up to controlled (q � 1)-power torsion.

Remark 4.4 With further work, appropriate completions of the complex q⌦X/A and its hyperco-
homology recover purely p-adic constructions from [BMS] for the p-adic completion of X0.
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